
www.manaraa.com

A FLOATING-POINT EXTENDED KALMAN FILTER IMPLEMENTATION
FOR AUTONOMOUS MOBILE ROBOTS

Vanderlei Bonato, Eduardo Marques ∗

Institute of Mathematical and
Computing Sciences

The University of São Paulo
São Carlos, BR.

email: vbonato, emarques@icmc.usp.br

George A. Constantinides †

Department of Electrical and
Electronic Engineering

Imperial College London
London, U.K.

email: g.constantinides@imperial.ac.uk

ABSTRACT

Localization and Mapping are two of the most important
capabilities for autonomous mobile robots and have been re-
ceiving considerable attention from the scientific computing
community over the last 10 years. One of the most effi-
cient methods to address these problems is based on the use
of the Extended Kalman Filter (EKF). The EKF simultane-
ously estimates a model of the environment (map) and the
position of the robot based on odometric and exteroceptive
sensor information. As this algorithm demands a consider-
able amount of computation, it is usually executed on high
end PCs coupled to the robot. In this work we present an
FPGA-based architecture for the EKF algorithm that is ca-
pable of processing two-dimensional maps containing up to
1.8k features at real time (14Hz) and is two orders of magni-
tude more power efficient than a general purpose processor.

1. INTRODUCTION

Mobile robotics is a very active research field that has been
investigated for more than two decades. Its goal is develop
intelligent machines capable of acting autonomously in com-
plex environments. Localization and mapping, which are
used to calculate the robot position inside its navigation en-
vironment and to create a representation of this environment,
are two of the most important tasks to be performed by mo-
bile robots [1]. Most solutions for these problems are based
on probabilistic inferences derived from Bayes filters [2] in-
volving high computational complexity and a large volume
of data.

In most cases, these algorithms are implemented on per-
sonal computers, and can not be directly applied to mobile
robots [3]. Embedding these algorithms on chip is usually
desired when the typical solution of a laptop mounted on the

∗Ack. to CAPES (Ref. BEX2683/06-7)
†Ack. to EPSRC (Grant EP/C549481/1 and EP/C512596/1)

robot is unsatisfactory, such as when the robotic system has
power constraints [4].

This paper presents an FPGA-based implementation of
the EKF algorithm [5] related to simultaneous localization
and mapping (SLAM) problem. The main contributions of
this work are: it is the first FPGA-based architecture for
the EKF-based SLAM problem; presents an analysis of the
computational complexity and memory bandwidth require-
ments for the FPGA-based EKF and shows that our pro-
posed architecture updates feature-based maps in real time
with 3× more features than a Pentium M 1.6GHz processor,
while consuming only 1.3% of the processor power.

The paper is organized as follows. Section 2 presents the
EKF equations and a complexity analysis is derived. The
proposed architecture is presented in Section 3, and then
Section 4 shows some experimental results. Finally, Sec-
tion 5 concludes the paper.

2. EKF COMPUTATION COMPLEXITY ANALYSIS

This section presents the EKF equations along with a com-
plexity analysis related to the number of floating-point oper-
ations. A complete EKF algorithm description can be found
in [1].

It is well known that the computational requirements
for EKF algorithm in SLAM is Θ(n2), where n represents
the number of features [1]. However to better understand
how this computational complexity is distributed between
its equations, we present in Table 1 an analysis of the num-
ber of floating-point operations for each EKF equation used
in our proposed architecture (See in Table 2 the variables
used in the prediction and update EKF equations along with
their dimensions). As can be noticed, the highest complex-
ity is located in equation (5), since as all elements of the
covariance matrix, which has a high dimension given by
(r+sn)× (r+sn), must be evaluated and updated for each
iteration. Consequently in this particular equation there is



www.manaraa.com

Table 1. Number of floating-point operations for each EKF
equation when r = 3 and s = 2, where n corresponds to
the number of features and r and s are the robot and feature
state size, respectively.

Equations FLOP

(1); (2); (9); (10); (3) 9; 189; 30n; 2; 36n+ 97

(4); (11); (5) 36n+ 93; 8n+ 21; 16n2 + 60n+ 54

Total 16n2 + 170n+ 465

Table 2. The description and dimension of the EKF sym-
bols, where s and r represent the feature and robot state size,
i the feature number and n the total number of features.

Symbols Dimension Description
v r × 1 Robot position
f s× 1 Feature position
µ (r + sn)× 1 Both robot and feature positions
µv r × 1 Elements of µ for robot position
µf sn× 1 Elements of µ for feature position
Σvv r × r Robot position covariance
Σvf r × (sn) Cross robot-feature covariance
Σff (sn)× (sn) Cross feature-feature covariance
Σ (r + sn)× Cross robot-feature

(r + sn) and feature-feature covariance
α - Prediction function
γ - Measurement function
u r × 1 Robot motion command
F r × r Robot motion Jacobian
G r × r Robot motion noise Jacobian
Q r × r Permanent motion noise
Hv s× r Measurement Jacobian; respect to µv

Hfi s× s Measurement Jacobian; respect to µfi

H s× (r + sn) Compounded measurement Jacobian
R s× s Permanent measurement noise
W (r + sn)× s Filter gain
ν s× 1 Mean innovation
z s× 1 Sensor measurement

zpred s× 1 Sensor measurement prediction
S s× s Covariance innovation
Z1 s× (s(i− 1)) Zero Matrix
Z2 s× (s(n− i)) Zero Matrix

not only a large number of floating-point operations, but also
a large memory bandwidth requirement to access the covari-
ance matrix. Therefore, both aspects must be considered in
order to develop a high performance system. Another im-
portant consideration is related to the matrix H(t) that has
dimension s × (r + sn) and is used to multiply the covari-
ance matrix that has dimension (r+sn)×(r+sn). As given
in equation (7), H(t) is a sparse structured matrix. Taking
advantage of this structure, the total EKF complexity can be
reduced from 48n2 + 202n+ 255 to 16n2 + 170n+ 465, as
given in Table 1.

Prediction:

µ
(t)
v = α(v(t−1), u(t)) (1)

Σ
(t)
vv = F (t)Σ

(t−1)
vv F (t)T +G(t)QG(t)T (2)

Σ
(t)
vf = F (t)Σ

(t−1)
vf (3)

Update:

µ(t) = µ̄(t) +W (t)ν(t) (4)

Σ(t) = Σ̄(t) −W (t)S(t)W (t)T (5)

where:

µ̄(t) =

[
µ

(t)
v

µ
(t−1)
f

]
, Σ̄(t) =

[
Σ

(t)
vv Σ

(t)
vf

Σ
(t)T
vf Σ

(t−1)
ff

]
(6)

H(t) =
[
H

(t)
v Z1 H

(t)
fi Z2

]
(7)

z
(t)
pred = γ(µ

(t)
v , µ

(t−1)
fi ) (8)

ν(t) = z(t) − z(t)pred (9)

S(t) = H(t)Σ̄(t)H(t)T +R (10)

W (t) = Σ̄(t)H(t)TS(t)−1 (11)

3. HARDWARE ARCHITECTURE

This section presents a hardware architecture specially de-
veloped to compute the prediction and update phases of the
EKF algorithm applied to the SLAM problem. To imple-
ment this architecture we consider that the prediction and
measurement functions along with their Jacobian matrices
are computed separately and their results are stored in the
on chip memories. As can be noticed from the previous
section, the main characteristics of this algorithm are: most
operations are matrix multiplication, addition and subtrac-
tion, and particularly in equation (5) a large quantity of data
must be read and updated in the covariance matrix. Guided
by these dominant characteristics and also by the desired
system performance, we propose an FPGA-based architec-
ture illustrated in Fig. 1, which is composed of four external
memory banks, a set of on chip memories, a state machine
and four Processing Elements (PEs).

To define the required performance for this architecture
we consider its application in a SLAM system that has only
monocular cameras as the exteroceptive sensors, which is
the case in our mobile robotics project [6]. In this SLAM
system the depth information of the features are obtained
by using the well-known triangulation technique [7]. There-
fore, the cameras, which are fixed on the robot base, must be
moved to capture images from different positions. Consider-
ing that the robot navigates in a straight line with maximum
speed of 1m/s and that the triangulation works with images
captured every 70mm, we have the EKF epoch frequency
defined by: 1000/70 = 14.28Hz. Hence, the required per-
formance can be estimated by combining this information
with the requirement of 1.5k features to be processed by the
EKF algorithm in real time.

For 1.5k features and r and s equal to 3 and 2, respec-
tively, the covariance matrix dimension Σ(t) is 3003× 3003
and the mean vector µ(t) is 3003 × 1. In this implemen-
tation the data are represented in single precision floating-
point format (32bits), so these matrices store a total equal to
36MB. These data are stored in an external memory and that



www.manaraa.com

Fig. 1. EKF architecture; MPEx are on chip memories for
PEs data reusability and b the PEs buffer size; other symbols
are presented in Table 2.

they must be read and written at a frequency of 14Hz. As a
result, the external memory bandwidth is 1GB/s. In order to
avoid bottlenecks the proposed architecture distributes the
data between 4 external memories. The access control to
these memories is implemented by a state machine, where
each memory bank is accessed in parallel. This state ma-
chine also controls the data flow between the on chip mem-
ories and the PEs, exploits the data reuse inside the FPGA
using the on chip memory bank (MPEs), computes the inver-
sion of matrix S and controls the iteration among the EKF
equations.

3.1. Processing Element

The purpose of the PEs in the EKF architecture is to com-
pute the three most common operations of the EKF algo-
rithm, which areR = AB; R = C+AB andR = C−AB,
where A,B,C and R are block partitions of matrices. These
operations are implemented in a such way that data reuse in
the code can be exploited, mitigating the off chip memory

access bottleneck, and FPGA parallelism can be efficiently
explored.

In this architecture matrices of size N × M are parti-
tioned into blocks. Consider three matrices A, B and C
where A multiplies B and the result is added to C. Each
block is composed of 1 ×M elements of matrix A, N × 8
elements of matrix B and 1 × 8 elements of matrix C. The
constant 8 corresponds to the number of words that can be
stored in the on chip memory of each PE for data reuse. In
our proposed PE the size 8 was chosen as it results in a good
tradeoff between on chip memory size and off chip mem-
ory bandwidth requirement for our target platform. In the
proposed architecture each matrix block is processed by a
single PE, hence 4 blocks can be concurrently processed.

In the PE architecture the data of matrix A is reused
8 times. However, whenever matrix B has fewer than 8
columns the computation is re-ordered in order take full ad-
vantage of pipeline depth. In the EKF algorithm, this hap-
pens in the operations used to calculate the filter gain W ;
the transformation is represented by R = (BTAT )T , R =
(CT + BTAT )T or R = (CT − BTAT )T , and they are
easily done in the state machine by changing the data order
sent to the FIFOs. Finally, in situations where matrix A has
fewer than 8 rows and matrix B fewer than 8 columns, it is
necessary to fill this gap with dummy data and then reject
the corresponding results. In the EKF algorithm this occurs
only in equation (2).

4. RESULTS

This section presents some experimental results related to
the EKF architecture described in this paper, in particular the
hardware resources employed, its performance and power
consumption. The architecture is described in the Handel-C
language and it has been validated in the Celoxica RC250
development kit, featuring an EP2S90F1020C4 FPGA and
4 external SRAM memory banks.

The resource utilization and the maximal clock frequency
of a single PE is shown in Table 3. As can be noticed, 70% of
the PE resources are used by the floating-point units (MULT,
ADD) and the remaining 30% by the control logic. These
floating-point units are from the Celoxica library, and are
single precision based on the IEEE754 standard. Although
the MULT unit has an operating frequency higher than the
ADD unit, the overall PE frequency is limited by the ADD
as they are working from a common clock. The minimal PE
latency is 4 and the maximum depends on the PE operations
and the matrix size.

Table 4 presents the resources for the whole architecture,
which includes the external memory controller, EKF state
machine, embedded memories and the 4 PEs. The most part
of the resources in column SM + EMC is used to imple-
ment the EKF state machine. The state machine is relatively



www.manaraa.com

Table 3. FPGA resources for a single PE.
EP2S90F1020C4 MULT ADD/SUB Entire PE

Clock (MHz) 156 97 94
Latency 3 3 4(minimal)
ALUTs 599 1078 2368
Registers 517 546 1492
DSP blocks (9bit) 8 0 8

Table 4. FPGA resources for the whole EKF architecture;
where SM is the EKF State Machine and EMC the External
Memory Controller.

EP2S90F1020C4 4 PEs SM+EMC Total

Clock (MHz) 90 70 70
ALUTs 9252 8868 18120 (25%)
Registers 5332 2985 8317
DSP blocks (9bit) 32 0 32 (8%)
Memory bits 9216 3392 12608 (1%)

large as it has to repeatedly partition each matrix between
the PEs and combine the results again. Moreover, it contains
a floating-point division unit used to calculate the S matrix
inversion. Although the PE has higher frequency than the
state machine, the whole system clock rate is limited by the
state machine clock as it is responsible for sending data to
and reading from the PE FIFOs.

4.1. Performance and Power Analyses

We can analyse the system performance at the achieved clock
frequency of 70MHz, the EKF prediction and update fre-
quency 14Hz and the algorithm complexity presented in Ta-
ble 1, where n represents the number of features. In this
implementation each PE computes 2 floating-point opera-
tions (MULT and ADD) per clock cycle and as there are
4 PEs the system has peak floating-point performance of
560MFLOPs. However, the average performance is slightly
inferior to these figures for the following reasons: first, the
FIFOs are both flushed whenever there is a transition from
one matrix operation to another and second, in some clock
cycles the state machine does not send data to the FIFOs as
a consequence of internal loop controls. The first overhead
is a constant and the bigger the matrices are the smaller the
influence average performance. However, the second over-
head is a proportional value that reduces the average perfor-
mance by approximately 3%. Thus the maximum number
of features that can be processed in real time (14Hz) is ap-
proximately 1.8k. The power consumption of the EKF sys-
tem was estimated by the PowerPlay Power Analyzer from
Quartus II tool. The estimated power using signal activities
generated by probabilistic methods is 1.3W.

To compare these results with another technology we

consider the Pentium M 1.6GHz processor as it is commonly
found in on-board mobile robot cards, such as in the Pioneer
3DX platform [8]. The performance achieved running the
EKF implemented in C on this processor is 572 features in
real time and the power consumption of this processor, ac-
cording to its datasheet, is 31.1W. Thus, comparing these
solutions, we can notice that the FPGA processes 3× more
features in real time and also consumes two orders of mag-
nitude less energy than the Pentium M.

5. CONCLUSION

We have presented in this paper a computational complexity
analysis and an FPGA-based architecture for the EKF algo-
rithm applied to the SLAM problem. The analysis demon-
strated that for hardware implementation, both an efficient
floating-point matrix multiplication and a high external mem-
ory bandwidth are required. On the Celoxica RC250 plat-
form, we have demonstrated that FPGAs are a suitable tech-
nology to solve this problem as the matrix multiplication
can be accelerated by exploiting parallelism, while the off
chip memory bandwidth can be improved through access to
parallel memory banks. As a result, the architecture we im-
plemented on the FPGA has both a higher performance and
a significantly less energy consumption than the general pur-
pose processor commonly adopted to solve this problem.

6. REFERENCES

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics.
Cambridge, MA, USA: MIT Press, 2005.

[2] D. Fox, J. Hightower, L. Liao, D. Schultz, and G. Borriello,
“Bayesian filters for location estimation,” IEEE Pervasive
Computing, vol. 2, no. 3, pp. 24–33, 2003.

[3] P. Pirjanian, N. Karlsson, L. Goncalves, and E. D. Bernardo,
“Low-cost visual localization and mapping for consumer
robotics,” Industrial Robot, vol. 30, no. 2, pp. 139–144, 2003.

[4] B. Thomas, Embedded Robotics: Mobile Robot Design and
Applications with Embedded Systems. Berlin and Heidelberg:
Springer-Verlag, 2003.

[5] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain
spatial relationships in robotics,” in Autonomous robot vehi-
cles. New York: Springer-Verlag, 1990, pp. 167–193.

[6] V. Bonato, J. A. d. Holanda, and E. Marques, “An embedded
multi-camera system for simultaneous localization and map-
ping,” in Proceedings of Applied Reconfigurable Computing,
Lecture Notes on Computer Science - LNCS 3985. Springer-
Verlag, 2006, pp. 109–114.

[7] R. I. Hartley and A. Zisserman, Multiple View Geometry in
Computer Vision, 2nd ed. Cambridge University Press, 2004.

[8] ActivMedia Robotics, “Technical spec-
ifications,” 2006. [Online]. Available:
http://www.activrobots.com/ROBOTS/p2dx.html


